
Machine learning:
SVM, ANN, ensembles, active 

learning, practical issues



Agenda

● SVM

● Neural networks

● Ensemble methods

● Active learning

● Practical issues



Logistic Regression

● Probabilistic linear classifier

● Logistic (sigmoid) function f(x)=1/(1+e-x)
○ Where x = w0 + ∑iwixi
○ f(x) = P(C=1|X)

● w0 + ∑iwixi = 0 defines a hyperplane where P(C=1|X) = 0.5 and P(C=0|X) = 0.5

and w0 + ∑iwixi is proportional to the distance from the hyperplane

● Learning
○ no closed form solution - optimization, e.g., with gradient descent
○ definition of a cost function (several options); -y log (y’) - (1-y) log (1-y’) ; y in {0,1}
○ updating of weights (according to optimization results); wj = wj - 𝛼 ∑i (y’i - yi)xij

for all instances, multiple times



SVM 

● Linear binary classifier (not probabilistic)

● Extension of linear classifiers to model non-linear decision boundaries

○ Transformation of the feature space using synthetic features of 
higher order

y' = w0 + w1x1 + w2x2         + w3x1
2 + w4x2

2 + w5x1x2

● But this brings problems

○ Computational complexity (a lot more parameters to learn, 
transformation operations)

○ Overfitting
● SVM algorithm deals with these (max. margin & SV, kernel trick & SV)



SVM - max. margin

● Model (linear, hyperplane) for

separation of data by using the

maximal margin principle

(MAX: robustness, SV: stability)

● Learning: maximal margin (optimal hyperplane) optimization problem

● Soft margin to allow misclassifications

○ Distance on the wrong side: 𝜉i
○ Parameter C (misclassification cost) - set with experimentation!
○ Penalty: C⋅𝜉r

i



SVM - kernel trick

● Use of higher dimensions for linearly non-separable data

○ https://www.youtube.com/watch?v=3liCbRZPrZA

● Learning (optimization) involves dot products in the term to maximize:

classification too:

Dot product of training 
data points is needed, 
(not feature values)

~similarity

We can avoid 
representing W

https://www.youtube.com/watch?v=3liCbRZPrZA


SVM - kernel trick, here it is

● We do not need the feature values, just dot products

● Transformation to another (higher dimensional) feature space would 

mean:

𝛷(xi) ∙ 𝛷(xi)

calculation of transformations, then the lengthy dot products…

● Instead, we can use a function such that: K(xi, xj) = 𝛷(xi) ∙ 𝛷(xi)

○ And K(xi, xj) is in original space!
■ EXAMPLE !

○ We can only calculate kernels (polynomial, Gaussian RBF, ...)
○ Simetric, positive semi-definite; similarity ; even for strings, graphs
○ The mapping 𝛷 can now be only implicitly used


